首页 / 快报详情
订阅快报

迁移学习新突破,澎思科技刷新跨域行人再识别(ReID)世界纪录

  此次澎思科技刷新的ReID三大数据集,除了Market1501,DukeMTMC-reID两大常见数据集之外,还包含了MSMT17数据集。

  继在三大主流单帧图片行人再识别数据集、三大主流视频行人再识别数据集刷新世界记录后,近日,澎思科技(Pensees)再次在单帧图片数据集(Market1501,DukeMTMC-reID,MSMT17)刷新世界纪录,大幅提升了跨域ReID算法的准确率。

【行人再识别面临跨场景落地挑战 澎思科技再度刷新三大数据集世界纪录】

  此次澎思科技刷新的ReID三大数据集,除了Market1501,DukeMTMC-reID两大常见数据集之外,还包含了MSMT17数据集。MSMT17,即Multi-Scene Multi-Time,是在CVPR 2018上提出的一个更接近真实场景的大型数据集,涵盖了多场景多时段,是目前最赋有挑战性的综合跨场景大数据集。与之前的数据集相比,该数据库中行人和摄像头数目更多,覆盖场景更复杂,时间跨度更广。因此,在该数据集下模型的表现更能体现出算法的实力。

【对抗生成网络与自监督学习算法结合 迁移学习取得创新性突破】

  澎思科技此次成果的取得源于澎思新加坡研究院对算法的自研创新和融合探索。本次,澎思科技创新性地将对抗生成网络与自监督学习算法结合进行模型的训练,通过迁移学习,进行高准确率的跨场景(数据库)行人再识别算法的研发,取得了突破性进展。

  对抗生成网络在算法中主要有两个功能:
  一方面,进行数据库的域迁移,具体为原域到目标域的风格迁移;
  另一方面,进行目标域数据库的数据增强,具体为生成跨摄像头数据并给模型赋予相机风格不变的约束。

  未来,澎思科技将持续关注迁移学习、自监督学习等学术前沿研究,加大在边缘智能创新上的研发投入,为澎思AIoT生态体系的建设提供强有力的技术支持。同时,澎思科技也将积极推进AI算法在实际应用中的落地,关注不断出现的新场景、新需求,让AI服务社会生活的方方面面,驱动尖端AI技术向普惠性的智能服务持续进化。

👇查看原文获取更多信息
阅读原文来源:亿欧网
分享本篇快报
扫码添加企业微信,每天推送行业快报